

In-Context Learning by Linear Attention

Yue M. Lu¹ Mary Letey¹ Jacob Zavatone-Veth¹ Anindita Maiti² Cengiz Pehlevan¹ ¹Harvard University²Perimeter Institute

In-Context Learning

Neural networks exhibit ability to execute and learn tasks based only on examples seen in input, without needing explicit training.

Figure 1. ICL translation example [1]

- When does such an ability emerge?
- What **algorithm** is learned ICL for solving a task?
- What properties of data affect ICL in transformers?

A Toy Model

Study linear features, namely

context = { $(x_1, y_1), (x_2, y_2), \cdots, (x_{\ell}, y_{\ell})$ }

Methodology

Under a square loss, we can analytically solve for the optimal paramter matrix

$$\operatorname{vec}(\Gamma^*) = \frac{\sum_{\mu=1}^n y_{\ell+1}^{\mu} \operatorname{vec}(H_{Z^{\mu}})}{\left(\frac{n}{d}\lambda I + \sum_{\mu=1}^n \operatorname{vec}(H_{Z^{\mu}}) \operatorname{vec}(H_{Z^{\mu}})^{\top}\right)}$$

Using random matrix theory we can find a deterministic equivalent for Γ^* which we use to find exact ICL and IDG error curves.

We present implications of these error curves.

Sample-wise Double Descent

for
$$y_i = \boldsymbol{w}^\top \boldsymbol{x}_i + \epsilon_i$$

with

- tokens $oldsymbol{x}_i \in \mathbb{R}^d$
- label noise $\epsilon_i \in \mathbb{R}$
- context-dependent task vectors $w \in \mathbb{R}$

To prepare it for the attention model, embed each context as

$$Z = \begin{bmatrix} \boldsymbol{x}_1 & \boldsymbol{x}_2 & \cdots & \boldsymbol{x}_{\ell} & \boldsymbol{x}_{\ell+1} \\ y_1 & y_2 & \cdots & y_{\ell} & \boldsymbol{0} \end{bmatrix} \in \mathbb{R}^{(d+1) \times (\ell+1)}$$

where this structure includes a query token $x_{\ell+1}$, and the 0-entry is a placeholder for the corresponding answer label $y_{\ell+1}$ [2, 3].

We consider a linear attention mechanism [4]

$$A(Z) = Z + (VZ)(KZ)^{\top}(QZ)/\ell$$

We show this simplifies to a predictor

$$\hat{y}_{\ell+1} \equiv A(Z)_{\text{bottom right}} = \langle \Gamma, H_Z \rangle$$

for

parameters
$$\Gamma \in \mathbb{R}^{d \times (d+1)}$$

features $H_Z = \boldsymbol{x}_{\ell+1} \left[\frac{d}{\ell} \sum_{i=1}^{\ell} y_i \boldsymbol{x}_i^{\top} \ \frac{1}{\ell} \sum_{i=1}^{\ell} y_i^2 \right].$

Data Model

We will pretrain the linear transform on n different contexts of length ℓ . Each context has a corresponding task w^{μ} for $\mu = 1, ..., n$.

We choose Gaussian tokens and noise

$$\boldsymbol{x}_i \sim \mathcal{N}(0, \mathbb{I}_d/d), \qquad \epsilon_i \sim \mathcal{N}(0, \rho)$$

Task Structure We limit the task diversity within the contexts by sampling each w^{μ} from a

Figure 3. Verification of (4a) double descent and (4b) $n \sim d^2$ scaling in nonlinear models

Learning Transition in Task Diversity

When is a model actually learning in-context, i.e. solving a new regression problem by adapting to the specific structure of the task, rather than memorizing training task vectors? We refer to this as task generalization and model it as $g_{task} = e_{ICL} - e_{IDG}$.

- *g*_{task} large: model memorizes training tasks, has not learned the true task distribution.
- g_{task} small: the model is leveraging the underlying structure to generalize in task rather than memorize.
- We compare g_{task} for the linear transformer against a memorization prior [5] called dMMSE.

finite set of k possible tasks $\{\boldsymbol{w}_1, \cdots, \boldsymbol{w}_k\}$ uniformly. Each of these k tasks is gaussian

 $\boldsymbol{w}_j \sim \mathcal{N}(0, \mathbb{I}_d) \qquad \text{for } j = 1, \dots, k.$

Evaluation

We study two different testing regimes.

- 1. ICL test. Generate tokens and noise as before. Sample a *fresh* task from the true task distribution $\boldsymbol{w}_{\text{test}} \sim \mathcal{N}(0, \mathbb{I}_d)$.
- 2. IDG (In-Distribution Generalization) test. Sample w_{test} uniformly from the training pool $\{w_1, \dots, w_k\}$.

Key Parameters and Joint Scaling

The model parameters are

token/task dimension dcontext length ℓ number of contexts ntask diversity k

We introduce a scaling limit with rich behaviour given by

 $lpha \equiv \ell/d \,, \quad \kappa \equiv k/d \,, \quad \tau \equiv n/d^2$

We will solve the model in an asymptotic limit $d, \ell, n, k \to \infty$ holding $\alpha, \kappa, \tau = \mathcal{O}(1)$.

Figure 4. Plot of task generalisation g_{task} against task diversity κ showing learning transition

References

1. Brown, T. B. et al. Language Models are Few-Shot Learners. 2020.

2. Zhang, R. et al. Trained Transformers Learn Linear Models In-Context. 2023.

3. Wu, J. et al. How Many Pretraining Tasks Are Needed for In-Context Learning of Linear Regression?. 2024.
4. Wang, S. et al. Linformer: Self-Attention with Linear Complexity. 2020.

5. Raventós, A. *et al. Pretraining task diversity and the emergence of non-Bayesian in-context learning for regression.* 2023.