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In-Context Learning

Neural networks exhibit ability to execute and learn tasks based only on examples seen in
input, without needing explicit training.
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Figure 1. ICL translation example [1]

When does such an ability emerge?
What algorithm is learned ICL for solving a task?
What properties of data affect ICL in transformers?

A Toy Model

Study linear features, namely

context = {(x1, y1), (x2, y2), · · · , (x`, y`)}
for yi = w>xi + εi

with

tokens xi ∈ Rd

label noise εi ∈ R
context-dependent task vectors w ∈ R

To prepare it for the attention model, embed each context as

Z =
[
x1 x2 · · · x` x`+1
y1 y2 · · · y` 0

]
∈ R(d+1)×(`+1)

where this structure includes a query token x`+1, and the 0-entry is a placeholder for the
corresponding answer label y`+1 [2, 3].
We consider a linear attention mechanism [4]

A(Z) = Z + (V Z)(KZ)>(QZ)/` .

We show this simplifies to a predictor

ŷ`+1 ≡ A(Z)bottom right = 〈Γ, HZ〉
for

parameters Γ ∈ Rd×(d+1)

features HZ = x`+1
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Data Model

We will pretrain the linear transform on n different contexts of length `. Each context has a
corresponding task wµ for µ = 1, ... , n.
We chooseGaussian tokens and noise

xi ∼ N (0, Id/d), εi ∼ N (0, ρ)

Task StructureWe limit the task diversitywithin the contexts by sampling each wµ from a
finite set of k possible tasks {w1, · · · , wk} uniformly. Each of these k tasks is gaussian

wj ∼ N (0, Id) for j = 1, ... , k.

Evaluation

We study two different testing regimes.

1. ICL test. Generate tokens and noise as before. Sample a fresh task from the true task
distribution wtest ∼ N (0, Id).

2. IDG (In-Distribution Generalization) test. Sample wtest uniformly from the training
pool {w1, · · · , wk}.

Key Parameters and Joint Scaling

The model parameters are

token/task dimension d context length `

number of contexts n task diversity k

We introduce a scaling limit with rich behaviour given by

α ≡ `/d , κ ≡ k/d , τ ≡ n/d2

Wewill solve the model in an asymptotic limit d, `, n, k → ∞ holding α, κ, τ = O(1).

Methodology

Under a square loss, we can analytically solve for the optimal paramter matrix

vec(Γ∗) =
∑n

µ=1 yµ
`+1vec(HZµ)(

n
dλI +

∑n
µ=1 vec(HZµ) vec(HZµ)>

)
Using random matrix theory we can find a deterministic equivalent for Γ∗ which we use to
find exact ICL and IDG error curves.
We present implications of these error curves.

Sample-wise Double Descent
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(a) Ridgeless IDG error against τ
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(b) Ridgeless ICL error against τ

Figure 2. Double descent in τ = n/d2 for linear transformer

0 2 4 6 8 10 12 14
= n/d2

1.0

1.5

2.0

2.5

3.0

3.5

eIC
L

d = 20
d = 40
d = 80

(a) Nonlinear model double descent
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Figure 3. Verification of (4a) double descent and (4b) n ∼ d2 scaling in nonlinear models

Learning Transition in Task Diversity

When is a model actually learning in-context, i.e. solving a new regression problem by adapt-
ing to the specific structure of the task, rather thanmemorizing training task vectors? We refer
to this as task generalization and model it as gtask = eICL − eIDG.

gtask large: model memorizes training tasks, has not learned the true task distribution.
gtask small: the model is leveraging the underlying structure to generalize in task rather
than memorize.

We compare gtask for the linear transformer against amemorization prior [5] called dMMSE.
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Figure 4. Plot of task generalisation gtask against task diversity κ showing learning transition
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