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Cosmology!

The Cosmological Principle:

▶ Homogeneity: same at every point

▶ Isotropy: same in every direction

on large enough scales

Questions to answer:

▶ Why is this a good assumption?

▶ How can we relate theory to observation?



The Basics
Given the cosmological principle, must have a spacetime of the form

ds2 = gµνdx
µdxν = dt2 + a2(t)

(
1

1− Kr2
dr2 + r2dΩ2

)
(1)

▶ a is called the scale factor
▶ H = ȧ/a is called the Hubble parameter and measures the expansion rate of the

universe.
▶ K is a curvature constant, typically rescaled to K = −1, 0,+1.

K = 0,+1,−1 respectively



Observation: The CMB

▶ Directly after the big bang, universe was super hot, super dense, opaque plasma.

▶ ≈380,000 years after BB −→ universe is cool enough for hydrogen to form.

▶ Photons scatter off from this process unobstructed

▶ These photons (albiet much much colder) can be observed today!

The Cosmic Microwave Background

Average temperature: 2.725K



Problems

The Horizon Problem

▶ The CMB is very uniform

▶ Inhomogeneities will only grow with time.

Question: How would the very early universe be so uniform?

The Flatness Problem

▶ Curvature density diverges from it’s primordial value.

▶ Obviously this is not observed.

Question: Why would the very early universe be incredibly flat?



Inflation!

The Idea: Make the Hubble Radius 1/aH decrease, and make this last a while.

The Method: Assume the universe is filled with a special field ϕ called the inflaton.

S = SG + Sϕ =

∫
d4x

√
−g

(
1

2
R +

1

2
∇α∇αϕ− V (ϕ)

)
(2)

▶ Solves the Horizon Problem: energy density of inflaton dominates over
inhomogeneities, and allows parts of the sky that are distant now to be in causal
contact during inflation.

▶ Solves the Flatness Problem: energy density of inflaton dominates over
curvature density, allowing the primordial universe to have general curvature.



The Practicalities

▶ Globally, the universe is homogeneous and isotropic. Everything can be modeled
only by functions of time.

▶ Locally, we must model spatially dependent perturbations to our fields and
metric.

▶ R is the comoving curvature perturbation

▶ We can use R to connect fluctuations predicted by inflation to anisotropies in the
CMB.



The Big Picture



Why R Fails

To understand the evolution of R, we must expand the action in terms of R.

When K = 0 we have

S
(2)
R =

1

2

∫
d4xa3

ϕ̇2

H2

(
Ṙ2 − 1

a2
(∂iR)2

)
(3)

However, for a general curved universe (K ̸= 0)

S
(2)
R =

1

2

∫
d4x

√
|c |a3 ϕ̇

2

H2

{
1

a2
RD2R+

(
Ṙ − K

a2
R
H

)
D2

D2 − KE

(
Ṙ − K

a2
R
H

)}
. (4)





The Solution

Define alternative curvature perturbation variable

ζ = gR− 2
K

a2ϕ̇2

(
a2

ġH

K
− g

)
Φ (5)

This leads to a local action

S
(2)
ζ =

1

2

∫
dηd3x

√
c

(
(zζ)′′ − (∇zζ)2 +

(
3K +

z ′′

z

)
(zζ)2

)
(6)

and a familiar oscilator equation of motion for v = zζ

v ′′ +

(
D2 − z ′′

z

)
v = 0 (7)



Halfway There!

Still need to set initial conditions for our perturbation variable.

This requires setting a vacuum

▶ Particle-less state?

▶ Minimum-energy / ground state?

Example: Quantum Harmonic Oscillator

▶ x̂ = au(t) + a†u∗(t)

▶ Vacuum is given by lowest energy state and particle-less state: a|0⟩ = 0



RST: A Better Way

We need a covariant way to set the vacuum in a curved, expanding spacetime.

In the flat case, this is much easier.

RST for Massless Scalar Field: A massless field in our spacetime has mode equation
of motion

u′′ +

(
∇2 − a′′

a

)
u = 0 (8)

Can set the vacuum by minimising the renormalised stress energy tensor.

Application to Inflation: Flat case is lucky! This turns out to be exactly the
equation of motion for R modes in flat space during inflation.



Generalising to Curved Space

Curved case is less lucky :(

It turns out we can rescale our curvature perturbation, and redefine time so that RST
can be applied to ζ.

Yay! We finally have a complete IVP

0 = ζ̈ + (2
ż

z
+ H)ζ̇ − D2

a2
ζ (9)

ζ(t0) =
1√

2cs(−D2)1/4z(t0)
(10)

ζ̇(t0) = − i
√
−D2

a(t0)
+ H(t0)−

ż

z
(t0) (11)



Mission Accomplished

We’ve successfully generalised the traditional inflationary calculations to a curved
spacetime!

Next steps:

▶ ζ is defined by a simple but pesky differential equation for g

▶ Compute power spectrum for ζ and map onto Planck CMB data.


