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Motivation: Scattering Amplitudes

Proton collisions at the LHC can
be computed as collisions between
gluons. We want to compute
scattering amplitudes between
these particles.

A(gg → gg)
A(gg → ggg)
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All About Gluons

The amplitudes are from Yang-Mills theory with Lie algebra u(N).

Gluons are massless particles in the adjoint representation.

They carry momentum, helicity, and color labels. They interact as
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Tree Level Amplitudes

We want to compute all scattering amplitudes.

We start with the simplest ones: tree level amplitudes.

This is still very difficult.

g + g → g + g 4 diagrams
g + g → g + g + g 25 diagrams

g + g → g + g + g + g 220 diagrams
g + g + g → 7g more than one million!!!
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The clever way of doing this is

COLOR DECOMPOSITION

We separate the amplitude into a product

An =
∑

α∈Sn/Zn

Tr (T aα1 T aα2 · · · T aαn ) An(α1, α2, . . . , αn)

We refer to the quantity An(α1, α2, . . . , αn) as the partial amplitude.
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Partial amplitudes have only the Feynman diagrams that can be put
on the circle with no crossings.

This drastically reduces the number of diagrams. For example,
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Computing Amplitudes
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Parke-Taylor Amplitudes

In the 1980s, Parke and Taylor found

An,0(1+, 2+, . . . , n+) = 0
An,1(1+, 2+, . . . , i−, . . . , n+) = 0

An,2(1+, 2+, . . . , i−, . . . , j−, . . . , n+) = ⟨ij⟩4

⟨12⟩⟨23⟩⟨34⟩ · · · ⟨n1⟩

An,n−2(1−, 2−, . . . , i+, . . . , j+, . . . , n−) = [ij]4

[12][23][34] · · · [n1]

where

⟨ij⟩ = det
[
λi1 λj1
λi2 λj2

]
, [ij] = det

[
λ̃i1 λ̃j1
λ̃i2 λ̃j2

]

Parke and Taylor (1986).
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A Formula for Amplitudes

For n particles, k of which have negative helicity labeled by i1 · · · ik,
the partial amplitude can be written as

Ak,n =
∫

dk×nC
|i1 · · · ik|4

|1 · · · k||2 · · · k + 1| · · · |n · · · k − 1|
δ

(
C · Λ̃

)
δ

(
C⊥ · Λ

)

where we have defined

C =

c11 . . . c1n
... . . . ...

ck1 . . . ckn

 , |1 · · · k| = det

c11 . . . c1k
... . . . ...

ck1 . . . ckk


and Λ, Λ̃ are 2 × n matrices containing all kinematic data.

Arkani-Hamed, Cachazo, Cheung, and Kaplan (2009). 0907.5418
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Geometry for k = 2

For k = 2, the singularity structure of the integrand is captured by six
points on a circle. We think of this as six copies of RP0 inside RP1.

⟨ij⟩4

⟨12⟩⟨23⟩⟨34⟩⟨45⟩⟨56⟩⟨61⟩
=

12

3

4 5

6

Flipping two adjacent points gives a partial amplitude for a different
color ordering.
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3 Negative Helicity
Particles
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Geometry for k = 3

For n particles, 3 with negative helicity, we consider

I = |246|4

|123||234||345| · · · |n12|

We want to represent the singularity structure of this object. Let’s try
the circle for n = 6.

12

3

4 5

6

Unfortunately, this does not work.
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We need to go one dimension higher!

To represent 3 numbers geometrically, we need

TRIANGLES

The singularity structure of n particles, 3 with negative helicity, is
captured by n lines in the (projective) plane.

Cachazo, Early, and Zhang (2022). 2212.11243
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5 Lines on the Plane
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Figure: Five copies of RP1 in RP2.
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6 Lines on the Plane
I 2 3

4

4 4 4 a
6 3

s
5 3 34

6 3

4 43 34
4

4

3 2 6

1

4
53

4 44
s

s

g
3

3

4 3 4 5

4
4
3 72 I

6

Figure: Six copies of RP1 in RP2.

18 / 31



I 2 3

4

4 4 4 a
6 3

s
5 3 34

6 3

4 43 34
4

4

3 2 6

1

4
53

4 44
s

s

g
3

3

4 3 4 5

4
4
3 72 I

6

Figure: Six copies of RP1 in RP2.

19 / 31



Summary of 6 Line Configurations

Type Triangles Squares Pentagons Hexagons
0 6 9 0 1
I 6 8 2 0
II 7 6 3 0
III 10 0 6 0
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Neighbours of Different Types
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“Amplitudes” for
Generalized Color

Orderings
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Computing Partial Amplitudes

Using the delta functions in the partial amplitude formula

A3,6 =
∫

d3×6C
|246|4

|123||234||345||456||561||612|
δ

(
C · Λ̃

)
δ

(
C⊥ · Λ

)
we can reduce this to a single contour integral in C.

Therefore, we can compute partial amplitudes by computing
residues!
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From Pictures to Integrands
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Integrands for Different Types

I0 = |246|4

|123||234||345||456||561||612|
,

James

II = |246|4

|126||123||234||456||356||451|
,

James

III = |246|4|156|
|125||126||136||145||234||356||456|

,

James

IIII = |246|4(|124||345||136||256| − |245||356||126||134|)
|145||136||234||256||125||356||345||146||246||123|

.
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Computing the Residues

We computed the residues of different integrand types as

Res|456|=0 I0 = ⟨46⟩4[13]4

⟨45⟩⟨56⟩[12][23]⟨4|P |1]⟨6|P |3]P 2 , P = 4 + 5 + 6

holaJames

Res|126|=0 II = ⟨26⟩4[35]4

⟨12⟩[45]⟨1|P |3]⟨2|P |5]⟨6|P |3]⟨6|P |4] , P = 1 + 2 + 6

holaJames

Res|234|=0 III = ⟨24⟩4[15]4P 2

⟨4|P |1]⟨3|P |1]⟨2|P |5]⟨3|P |5]⟨2|P |6]⟨4|P |6] , P = 2 + 3 + 4.
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Conclusions
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Future Directions

(1) We would like to understand the physical significance of the
generalized color orderings.

(2) One possibility is to interpret them in terms of on-shell diagrams.

(3) We would also like to understand the correspondence between our
results and the Grassmannian formulation of scattering
amplitudes.
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James may or may not be bald
Yong Zhang
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Winter School Organizers
I was lying, James is bald
All of you!
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Secret Slides
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Geometric Interpretation of the Delta Functions
The delta functions in the formula

δ
(
C · Λ̃

)
, δ

(
C⊥ · Λ

)
have a very natural geometric interpretation.
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